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Abstract 

Control of rotating stall in axial compressors is considered. A local bifurcation stabilization 

theorem using the projection method for the case of an uncontrollable, unobservable critical 

mode is described and extended to control laws that do not vanish at the critical or bifurcation 

point. This result is used to derive sufficient conditions for several control laws to guarantee 

that the subcritical pitchfork bifurcation of an axial compressor model is made supercritical so 

that the rotating stall hysteresis is eliminated. Each of the control laws considers operation 

at a set point distinct from the critical point and depends only on annulus-averaged quantities 

as feedback variables to simplify sensing and signal processing requirements. The actuation 

considered is a bleed valve so that the control law must be positive for all possible values of the 

feedback variables. It is shown that positive control is stabilizing for only some of the control 

laws considered. In these cases, numerical examples show the transformation of the bifurcation 

from subcritical to supercritical and the elimination of the hysteresis region. Finally, geometric 

interpretations of the effects of the feedback laws in the state space are described. 



1    Introduction 

Rotating stall in axial compressors is a phenomenon that limits the performance of gas turbine 

engines. It is characterized by a cell of reduced or blocked flow rotating around the annulus of the 

compressor at a fraction of the rotor speed. Such behavior is self-sustaining and causes a significant 

loss of performance with possible damage to the compressor blades from the periodic loading of 

the rotating stall cell. Furthermore, recovery from such a condition can be difficult, often requiring 

shutting down and restarting the engine. Such behavior has traditionally been avoided by requiring 

that the operating point of a compressor be well below the peak pressure rise, where the compressor 

is most likely to enter rotating stall. In this case, rotating stall is avoided by sacrificing performance 

to maintain safe operation. 

A seminal contribution in the understanding of rotating stall dynamics was the development of 

the Moore-Greitzer compressor model [8], which combines a lumped-parameter surge model with a 

representation of the unsteady, two-dimensional (axial and circumferential) flow in the compressor 

annulus. Variations in the flow around the annulus of the compressor can be characterized using 

this model so that rotating stall dynamics can be studied. The full Moore-Greitzer model has the 

form of a nonlinear partial differential equation and a nonlinear ordinary differential equation in the 

pressure rise coefficient and the distributed mass flow coefficient around the annulus. The partial 

differential equation can be approximated using a Galerkin procedure, resulting in a set of three 

nonlinear ordinary differential equations for the pressure rise, annulus-averaged mass flow, and first 

spatial Fourier magnitude of the rotating stall cell. Although the third order approximation is a 

great simplification of the distributed model, it captures the essential physics of the compressor 

behavior and qualitatively demonstrates behavior seen experimentally. 

The stationary and periodic solutions of the Moore-Greitzer three-state model as a function 

of the critical parameters have been studied in detail [7]. The stationary solutions of the equa- 

tions consist of axisymmetric equilibria corresponding to design flow and rotating stall equilibria 

corresponding to disturbed flow or rotating stall. When the first spatial Fourier magnitude of the 

rotating stall cell is used as a state, a pitchfork bifurcation appears at the peak of the compressor 

characteristic and both branches of equilibria emanate from this point. When the bifurcation is 

subcritical, stable portions of the axisymmetric and rotating stall branches coexist over some range 

of parameters and hysteresis results.   Since the domains of attraction of equilibria along the ax- 



isymmetric branch near the bifurcation point are typically small, a small disturbance can perturb 

the system along a trajectory away from the axisymmetric equilibrium point to a locally stable 

rotating stall equilibrium. Hence operation near the hysteresis must be avoided; it is this hysteresis 

that limits the performance of the compressor. 

Several researchers have considered controllers for the three state approximation of the Moore- 

Greitzer model with bleed valves as actuation. In this case the critical mode, rotating stall mag- 

nitude, is uncontrollable. The most notable controller was one based on feedback of the square 

of the rotating stall magnitude [6]. Using results from bifurcation stabilization theory, namely, 

the projection method, it was shown that this controller could eliminate the hysteresis region for 

sufficiently large gain. Furthermore, this control law was demonstrated experimentally [2]. An 

alternative approach was considered in [5]. Here, only annulus-averaged quantities, rather than 

the rotating stall magnitude, were used as feedback. In this case, the feedback law was chosen to 

guarantee global asymptotic stability based on a Lyapunov function. 

In [3], one parameter families of nonlinear systems with uncontrollable critical modes were 

considered. It was shown that for smooth nonlinear output feedback, the control laws that stabilize 

the bifurcated solutions emanating from the critical point depend on the observability of the critical 

mode. In particular, different terms in the Taylor series expansion of the control law about the 

critical point were shown to affect stability for the different cases. In the case of an observable critical 

mode, the quadratic terms are required to be nonzero for the stabilization of a subcritical pitchfork 

bifurcation, while for an unobservable critical mode, linear terms are required to be nonzero and 

quadratic terms play no role. Hence, the results of [6], where the rotating stall magnitude was 

used as feedback so that the critical mode was observable, depend on a feedback law that is locally 

quadratic at the critical point, while the results of [5] use only annulus-averaged quantities and 

hence only the linear terms contribute to stability since the critical mode is unobservable. 

In this paper, we extend the results of [3] which considers local bifurcation control by considering 

control laws that do not vanish at the critical point. We find that every term of a control law 

naturally written in a power series about some operating or set point affects the stability of the 

bifurcated solution at the critical point when the operating point is different from the critical 

point. We then exploit this fact by defining controllers satisfying a physical restriction on the bleed 

valve, namely, that since bleed valve actuation requires the control input to be positive, control 



laws must be positive for all values of the feedback variables. We show that positive control is 

stabilizing for some of the controllers considered but not for others. In each case, the controllers 

rely on only annulus-averaged quantities, rather than distributed quantities as in the controllers of 

[2, 6]. Using only annulus-averaged quantities simplifies sensing and signal processing requirements. 

We present numerical examples to demonstrate the elimination of the hysteresis region when the 

stability conditions are satisfied and give some geometric interpretations of the effects of different 

control laws in the three-dimensional state space. 

2    Moore-Greitzer Model 

The Moore-Greitzer model consists of a compressor modelled as a semi-actuator disk in a duct, 

a plenum representing the combustion chamber, and a throttle representing the turbine [8]. A 

schematic of the model is shown in Figure 1. Here px is the pressure ahead of the entrance, ps is 

the pressure in the plenum, <j>(0,£) is the local mass flow coefficient, £ is time nondimensionalized 

by rotor speed U, r/ is the axial spatial variable, and 6 is the circumferential spatial variable. 
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Figure 1: Schematic of Moore-Greitzer Model 

Summing the pressure rise across each of the elements yields 

* + ^ = ^)-A| 
7J=0 

where $ = (ps — PT)IpU2 is the pressure rise coefficient, $ is the average flow coefficient around 

the annulus, 6<j> is the disturbance flow coefficient, 6(j> is the disturbance velocity potential, and 

V'c(^) is the compressor characteristic that relates the mass flow through the compressor to the 



pressure rise in the steady state.  The disturbance velocity potential satisfies Laplace's equation 

S(pvr] + 8(f>gg = 0 so that 
oo    i 

H=Y1 ~(An cos ne + Bn sin nO)enr], 
n 

so that the disturbance velocity is 
71=1 

d6d>     y-^ , 
' = -^ = J2(A^ cos n0 + Bn sin n9)env. 

71=1 

Next, using conservation of mass yields the equation 

cM 1     , 

whee $T(7, *) = 7\/* is the throttle characteristic with throttle parameter 7. 

By assuming a cubic compressor characteristic and taking only the first harmonic terms in the 

expressions for the disturbance velocity and velocity potential, a Galerkin procedure yields the 

third order approximation of the Moore-Greitzer model. Letting A = JA\ + B2, the third order 

model can be written as 

dA A2 

— =   aA(#(*) + T#»(*)), (1) 

d$ 1 A2 

— =    -(^($)-$ + T^'W), (2) 

dV 1     , 

de = i5^(*-*r^*))- (3) 
The parameter a is related to the time lag in the blade passage, lc is the duct length parameter, 

and B is the rotor speed parameter. 

By setting the derivatives in (l)-(3) to zero, the equilibria of the three state model can be com- 

puted. Clearly, A = 0 is a possible solution to the equilibrium conditions, in this case corresponding 

to the design flow or axisymmetric equilibrium where 

*     =     Vc($), 

$    =    7A/¥. 

For some values of the throttle parameter 7, there also exists another equilibrium for which 

A2    =    -8#($) 

$    =   7A/$, 



which is the rotating stall equilibrium. In the sequel we will be interested in the stability of this 

branch of equilibria, as it will dictate the behavior of the overall system. 

3    Bifurcation Stabilization 

In this section we discuss stabilization of the bifurcated solution of a one-parameter family of nonlin- 

ear systems. In particular, we are interested in the case when the critical mode of the linearization 

is uncontrollable and unobservable. Previous results for this family of nonlinear systems are for 

local controllers, that is, controllers that are zero at the critical point and hence consider the critical 

point to be the equilibrium point. We extend these results to consider general equilibrium points 

away from the critical point, and show how these controllers affect the stability of the bifurcated 

solution emanating from the critical point. 

3.1     Projection Method 

First, we show a result that guarantees the stability of a one parameter family of nonlinear systems. 

The results presented in this section are taken from [1, 4, 6]. Consider the nonlinear system, 

x = f{x,fi), (4) 

where x £ ffi," is the state of the system, /j, £ IR is a parameter, and f(x0,fj.) = 0 so that x = x0 

is the equilibrium point of the system. Furthermore, the Jacobian matrix Dxf(x0,fi0) is singular 

so that (x,fi) = (x0,ju0) is the critical or bifurcation point. Hence, this system may possess several 

equilibrium branches emanating from the critical point. 

We are interested in the stability of the bifurcated equilibrium branch near the bifurcation point. 

Using the projection method, we can characterize the local stability of the bifurcated solution by 

approximating the eigenvalue of the linearization passing through the origin at the bifurcation point 

as 

A = AX£ + A2£2 + ••■, 

and determine stability based on the sign of the first nonzero term. Expanding (4) in a Taylor 

series about the bifurcation point x = x0 yields 

x = L0(x - x0) + Qo[x -x0,x- XQ] + C0[x - x0,x - x0,x - x0] H , 



where linear term LQ is 

L° = dx^Xo,fMo^ 

and the quadratic and cubic terms are symmetric forms 

Qo[x,y] d2h 2 £j=i ELi ^-fe(^o,Mo)^yfc 

C0[x,y,z] = I Ej=i ELi E"=i dJdI'kdxXxo^o)xjykzi 

where Xj,yk, and z; are the jth, &th, and Zth components of the vectors x, y, and z. It follows that 

LQ has a zero eigenvalue corresponding to the critical mode. Define the left and right eigenvectors 

of the zero eigenvalue of io as / and r, respectively, where the first component of r is chosen to be 

one and Ir = 1. Then, Ai and A2 can be defined as 

Ai    =   lQ0[r,r], 

A2    =    2l(2Q0[r,6] + C0[r,r,r]), 

where IS = 0 and 

LoS + Qo[r,r] = 0. 

The following theorem characterizes the stability of the bifurcated solutions of the system. 

Theorem 3.1 [6] The bifurcated solutions of the system (4) for /j, near zero are asymptotically 

stable (unstable) if Ai = 0 and A2 < 0 (X2 > 0) so that the bifurcation is supercritical (subcritical). 

3.2    Generalization of Local Output Feedback 

In [3], existence conditions are derived for a controller to stabilize the bifurcated solution of a one 

parameter family of nonlinear systems using local control when the critical mode is uncontrollable 

and unobservable. Consider the system 

x = f(x,fi) + g(x)u,  u = h(y),  y = ex, (5) 



where the control input u is a scalar. The critical point of the system is (x,fi) = (x0,p0), and 

when h(y0) = 0, where y0 = cx0, then this control is local, that is, the critical or bifurcation point 

is taken as the equilibrium point and the control vanishes there. The control law can be written 

in a Taylor series expansion about the critical point, and it has been shown [3, Theorem 3.2] that 

when the critical mode is unobservable, only the linear term of the control law u = h(y) affects the 

stability of the bifurcated solution. 

Here, we consider the more general case. Again consider the system and feedback law (5). Let 

xe be the operating or set point, where ye = cxe, satisfying 

0 = f(xe,fie) + g(xe)h(ye),   h(ye) = 0, 

and let XQ be the critical or bifurcation point satisfying 

0 = f(x0, po) + g(x0)h(y0), 

where h(yo) may be nonzero. We are interested in the case when the linearized dynamics at the 

critical point have a single zero eigenvalue and a bifurcation occurs there. We want to operate 

at the point xe with zero control effort there and we want to stabilize the bifurcated solution 

emanating from the critical point XQ. Hence, we want to determine the conditions on the feedback 

law u = h{y) to guarantee stability of the bifurcated solution. We know that for local controllers, 

that is when h(y0) = 0, only the linear term in the Taylor series expansion about the critical point 

affects stability. Now we need to determine which terms affect stability if h(y0) ^ 0. We will see 

that the constant and linear terms of the Taylor series expansion about the critical point affect the 

stability of the bifurcated solution so that all of the terms in the Taylor series expansion about the 

operating point xe affect stability. Hence, each of the terms in the control law affects stability if 

the control law is written in terms of a set point. 

Consider a control law h(y) written in the form 

%) = h(y - ye) + Hv - Ve)(2) + ■■■ (6) 

where z(p> = [z^ • • • z^]T is an element-by-element exponentiation. Note that this control law is 

written in the form of a Taylor series expansion about the set point. Now, expand the control law 

in a Taylor series about the critical point 

h(y) = ~k0 + Ax(y - jfo) + h{y - J/o)(2) + • • • • (7) 



The following theorem shows that each of the terms of the control law (6) affects the stability 

of the bifurcated solution emanating from (a^Mo) by showing that the constant and linear terms 

of the Taylor series expansion about the critical point determine stability. Hence, the following is 

a generalization of the result of [3] for local control. 

Theorem 3.2 If xe ^ XQ, then every term ki(y — yey-%> of the control law (7) affects the stability 

of the bifurcated solution of the system (5) emanating from (x0,/j,0). 

Proof. Write the closed loop system as 

x = f(x,fi) + g(x)[k0 + hc(x - x0) + k2(c(x - x0))^ + •••], 

and expand in a Taylor series about the critical point 

x = L0(x - x0) + Qo[x - x0, x - x0] + C0[x - x0, x - x0, x - x0] + ■ ■ ■. 

Using the Theorem 3.1, the bifurcated solution is stable if A2 < 0. Here, 

L0 = -£-(x0, Mo) + w-(x0)k0 + g(x0)k1c, 
ox ox 

Qo[x,y] 
■\^(x0)xk1cy + \^{xQ)ykicx + gi(x0)k2(cx) ■ (cy) 

C0[x,y,z] 

IE •=! ELi E?=i (55Äsr(*o,*>) + 5^sr(*o)*ö) xjykz, 

+ 1 E"=i ELi äffefao) (xjVkkicz + XjZkhcy + yjZkkicx) 

+ 3 flO^o) (xk~2(cy) ■ (cz) + yk2(cx) ■ (cz) + zk2(cx) ■ (cy)) 

+gi(x0)k3(cx) ■ (cy) ■ (cz) 

where (x) • (y) represents element by element multiplication. 



The right eigenvector corresponding to the critical mode is r, so that from observability con- 

ditions we know that if the critical mode is unobservable then cr = 0 so that the equations to 

determine Ai and A2 can be written as 

Ai = lQo[r,r] = I d2fi 2 Ej=i £Li(sijfe(*o,A*o) + 8^;(,xo)kQ)rjrk 

Lo$   =    -Qo[r,r] 

2 Ej=i ELi(ä^fe(a;o,/io) + äZ$;(xo)ko)rjrk 

Xo = 2l E?=i n=i(A-k(x0,ßo) + äärl^l^^t + 7&(*o)rÄic« Sa:*' 

+ 6 Ej=i £*=i Er=i(9^a^9a;i(a;o,Mo) + dXj
d

d^9xi(xo)ko)rjrkri 

Hence we see that only the constant and linear terms in the Taylor series expansion about the 

critical point affect the stability of the bifurcated solution, since these equations depend only on k0 

and ki. By equating the expansions (6) and (7), it follows that 

h   =   h(yQ - ye) + k2(y0 - ye)W + k3(y0 - ye)
{3) + ■■■, 

h    =    k1 + 2k2(y0-ye) + 3ks(yo-ye)
{2) + ---. 

Hence, since these terms depend on ki for all i, it follows that each of the terms in the control law 

(6) affects Ax and A2 so that each affects the stability of the system. ■ 

The previous theorem can hence be used to find control laws having particular structures to 

meet other requirements. In particular, for the rotating stall problem, we will choose control laws 

having only quadratic terms to satisfy positivity requirements on the control. Note that if the set 

point is equal to the critical point, then only the linear term in the control law affects the stability 

of the bifurcated solution. 

10 



4    Control of Rotating Stall 

In this section we characterize control laws that guarantee that the bifurcated solution is made 

asymptotically stable, or equivalently, that the bifurcation is rendered supercritical. Specifically, 

we will use bleed valves as control actuation. Since a bleed valve has the same effect on the 

compression system as the throttle, we replace $T(T, *) = iV^ by $7(7, W) = j>/W + u\/¥ where 

u > 0 is the bleed valve position. 

4.1     Stability of the Open Loop System 

Let the axisymmetric equilibrium point at the peak of the compressor characteristic be ($0,$0) 

with corresponding throttle parameter 70. This point is a bifurcation point and emanating from it 

is the rotating stall equilibrium branch. The following gives a sufficient condition for stability of 

this branch for the open loop system. 

Theorem 4.1 // 

(V"($o))2$o + *o#"(*o) < 0. 

then the bifurcated solution of the system (l)-(3) at ($0,*o) is asymptotically stable. 

Proof. Define the perturbation variables 

xi    =    A, 

x2    =    $ - $0, 

x3     =     *-*0, 

and expand the equations in a Taylor series about the critical point. In this case, 

a^($o) 0 0 

0 fc#(*o) -i 
0 ük       -IiMT(7o,*o) 

(8) 

Qo(x,y) 

fV'c/($o)(^i2/2 + x2yi) 

iV»c(*o)(|a;m + x2y2) 

-8W$T(70,*0>32/3 

11 



C0(x,y,z) 

aV»c"($o)(|a;i»i«i + l(x1y2z2 + x2yxz2 + x2y2zi)) 

TcW(.®o){lx2y2z2 + ±(x1y1z2 + x1y2z1 + x2ylZl)) 

The matrix L0 has a zero eigenvalue at the peak of the compressor characteristic where ^($o) = 0 

and the system undergoes a stationary pitchfork bifurcation. The left and right eigenvectors of the 

zero eigenvalue of LQ are 

1   0   0 

1   0   0 
T r      = 

and 

Ai 1   0   0 

0 

4W*0) 

0 

= 0. 

Since ij)'c($o) = 0 and $y(7o, $o) = ^, 6 can be computed from 

0 0 0 

0 0 

0 

lc 

$0 
4B2lc        8B2;C*0 

Since 16 = Si — 0, it follows that 

Si 

S2 

S3 

0 

1 JJI( 

0 

§#'(*o)fe 

K'(*o) 
Hence, 

A2 = 2a ±(#'(*o))2^ + ^''(*o) <** + !, 
*o     8 

Using Theorem 3.1, the bifurcated solution is asymptotically stable if A2 < 0, which is equilvalent 

to (8). ■ 

Using the above theorem, it is easy to see that if a system has a subcritical bifurcation for which 

the bifurcated branch is unstable, it follows that 

12 



4.2    Analysis of Control Laws 

In this section, we consider four control laws. In each case, the control laws are chosen so that 

for a positive gain, the control input is always positive. In the sequel we will derive conditions on 

the gains for the stability of the bifurcated solutions to guarantee that the subcritical pitchfork 

bifurcation is transformed into a supercritical pitchfork bifurcation. In some cases, the conditions 

will lead to positive gains while in others the conditions will lead to negative gains. The four control 

laws under consideration are 

(9) 

(10) 

(11) 

W < (12) 

where ($e, ©e) is the set point of the system on the compressor characteristic corresponding to the 

design point and distinct from the critical point ($0,*o)- Note that (10) can be written in terms 

of a Taylor series about the set point as 

üT($-$e)
2 _ üT($-$e)

2($-$e)     3if($-$e)
2(fl-fre)

2 

u = /$:($- *e)2, 

u = -*e)2, 

u = K(V - *e)2, 

u = 4c - *e)2, 

V * e 

while (12) can be written as 

2*J 
+ 

8*el 
+ 0($ - $e)

a 

fir c© _ © )2 

'Ve 

The following theorems give conditions for the stability of the closed loop system with the various 

control laws. 

Theorem 4.2  Consider the control law u = K(§ - $e)
2. If 

(#'($o))2*o + W"'($o) - 2ÜT(*o - *e)9l,2W($o) < 0, 

then the bifurcation is supercritical. 

Proof. The Taylor series expansion yields 

a^c($o) 0 0 

Ln = 0 W*o) -i 
0 ife(l-2^(*o-^)>/^)    "ggfe. 

(13) 

13 



As for the open loop system, Ai = 0 and 

0 0 

0 0 

0    ^(l-2^(*o-*e)V^) 

Since IS = 6\ — 0, it follows that 

Si 

S2 

Ss 

0 ' Si' 0 
1 

lc s2 

Ss _ 

— 

0 
8S2;c*o J 

0 

$o^'($o)) 
8*o(l-2K'(*o-*e)\/«ö) 

i#'(*o) 

Finally, 

A2 = 2« *o(#'(*o))2 

+ ö#"(*o) 
_8$o(l - 2A'($o - $e)V%)     8 

so that the bifurcated solution is stable and the bifurcation is supercritical if (13) is satisfied.      ■ 

Theorem 4.3 Consider the control law u = ~/b($ — $e)
2- If 

(#'($o))2*o + *oV>c"($o) - K [(#'($o))2(*o - *e)2 + 2$o($o - $e)#"(*o)] < 0, (14) 

then the bifurcation is supercritical. 

Theorem 4.4 Consider the control law u = A'($ — $e)
2- If 

(#'(*o))2*o+ *oV>c"(*o) + 4A(*o - *e)*o/2(^'(^o))2 < 0, 

then the bifurcation is supercritical 

Theorem 4.5  Consider the control law u = -4=($ - ^e)
2- Jf 

«(*0))2$0 + *0^c"($0) + Wc(*0))2 f4*o(*0 - * e) ~ (*0 - ^ e?}   < 0, 

then the bifurcation is supercritical 

The proofs of Theorems 4.3-4.5 are similar to that of Theorem 4.2 and are omitted. 

(15) 

(16) 

14 



4.3    Alternative analysis of control laws 

The conditions in Theorems 4.2-4.5 can be found using an alternative technique. First, introduce 

the variable J = A2 as the square of the rotating stall first Fourier magnitude. The equations can 

then be written as 

^    =   2aJ(^(*)+^»(*)), 

£ = £<«•)-•+£*(•)). 

The equilibrium conditions are 

*      =     VC(*)+^c(*), 

$    =    (7 + w)\/*. 

The pitchfork bifurcation of the system written in the A coordinate is transformed to a tran- 

scritical bifurcation when the J coordinate is used [6]. In addition, the former is subcritical (su- 

percritical) when the latter is subcritical (supercritical). It is noted from the geometry that the 

transcritical bifurcation becomes supercritical when df/dJ < 0. Hence, the stability conditions 

from the previous section can be rederived by finding the condition for which df/dJ<0. 

The derivatives of the first and second equations at the equilibrium yield 

d$ = §#"($0) 

dJ V£(*o) ' 

and 

Now, consider the controller (9). The new equilibrium condition is 

$ = (7 + K($ - §e)
2)V¥. 

15 



The derivative of the new equilibrium condition is 

dJ vdJ v  u      eJdJJ ' 2^ dJ' 

It follows that 

(1 - 2/fV*0($o - §e))-jj = V*0T7 + 

Hence if dj/dJ < 0 then 

(i - 2jr^(*o - *e))^J# + ^'(*o) > o. 
Vf($o)       8*0 

Noting that i/)"($0) < 0, it follows that 

(1 - 2Jfv^o"($o - $e))*o#"(*o) + $o(^'(*o))2 < 0, 

which is equivalent to (13). Similar results can be obtained for conditions (14)-(16). 

4.4    Critical Gains 

As mentioned before, each of the control laws must be postive, that is, u > 0 for all values of the 

feedback variables. In each case, the control laws are quadratic functions of the feedback variables 

so that the control is positive only if the corresponding gain K is positive. The conditions (13)-(16) 

for each of the control laws are inequalities that depend on the gains K. Hence, the inequalities 

can be used to determine whether a positive K satisfies the condition. 

Theorem 4.6  The control laws (9) and (10) satisfy the conditions (13) and (14), respectively, 

with some K > 0. 

Proof. First note that when the open loop system has a subcritical bifurcation, 

(#'(*o))2*o + $of($o) > 0. 

Now consider (13). Because of the shape of the compressor characteristic, ^"'($0) < 0. Further, 

since the set point $e is greater than the peak value $0, it follows that $0 - $e < 0. Hence, (13) 

can be rewritten as 

0 < (^(*o))8*o + g0#''(*o) < K 

2($o - $e)*0/2^"(*0) 

16 



Next consider (14). As before, V>"'($o) < 0 and $0 - $e < 0. Hence, (14) can be rewritten as 

0 < (CW)2$o + *o^"(<I>o) ■ K 

(^'($o))2($0 - $e)2 + 2*o($0 - *e)^"(*o) 

Theorem 4.7  Tfte control laws (11) and (12) satisfy the conditions (15) and (16), respectively, 

with some K < 0. 

Proof.  Consider (15).  Since the set point \Pe is less than the peak value \P0, it follows that 

$o - *e > 0. Hence, (15) can be rewritten as 

(#'($o))2$o + *o#"($o) 0> 
4(*0 - *e)*o/2(^'($o))2 

Next note that (16) can be rewritten as 

> K. 

so that 

(V>c(*0))2*0 + *0#"($0) + Wc'(*ü))2(*0 - *e)(3*0 + *e) < 0. 

0 > W&**)?** + *oW(*o)       > K 
(^'(*0))2(*0 - *e)(3$0 + *e)) 

From these two theorems we see that control laws (9) and (10) will stabilize the rotating stall 

branch for u > 0 with a positive gain K, while the control laws (11) and (12) only stabilize the 

rotating stall branch with a negative gain K so that u < 0. Because of physical constraints on the 

bleed valve actuation, only (9) and (10) represent useful feedback control laws. Next, we consider 

the range of gains for the control laws (9) and (10) that stabilize the linearization of the system at 

the peak of the characteristic. 

Theorem 4.8 The control law (9) stabilizes the linearization of the bifurcated solution of (1)- 

(3) over a semi-infinite interval. 

Proof. From Theorem 4.2 we know that control law (9) stabilizes the bifurcated solution for 

some positive interval. Consider the linearization at the peak, 

0 0 0 

0 0 -f 
'c 

L° ska - 2*(*o - *ey^) -gsfe 
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The nonzero eigenvalues of the linearization must remain in the open left half of the complex plane 

for the linearized system and hence the nonlinear system to be stable. The characteristic equation 

for the partition of the linearization with nonzero eigenvalues is 

A2 + $°     A + T4^(1 - 2i<-($o - $e)\/*o) = 0. 
852UPo ABHV 

Hence, for stability, 

1 - 2#($o " *e)\/^ > 0, 

which requires 

2($0-$eyfo"<A' 

so that the bifurcated solution is stabilized for K over a semi-infinite interval. ■ 

Theorem 4.9  The control law (10) stabilizes the linearization of the bifurcated solution of (1)- 

(3) over a finite interval with 

K < 
$n 

(17) 
(3>0-<I>e)2' 

Proof. From Theorem 4.3 we know that control law (10) stabilizes the bifurcated solution for 

some positive interval. Consider the linearization at the peak, 

£n = 

0 

0 

0    ife(l-^o-$.)) 

0 

($0-A'($0-$e 
8B2/c*o 

The nonzero eigenvalues of the linearization must remain in the open left half of the complex plane 

for the linearized system and hence the nonlinear system to be stable. The characteristic equation 

for the partition of the linearization with nonzero eigenvalues is 

A2 + ('°-5*°r*e)2)A + ^(1 - 2*(*o - *.)) = 0. 
852/c$0 

452/2 ' 

Hence, for stability, 

1 - 2K($„ - $e) > 0, 
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and 

$0 - ÜT($0 - $e)2 > 0, 

which require 

1 <K, 
2($0 - *e) 

and (17). Hence, the bifurcated solution is stabilized for K over a finite interval. ■ 

5    Numerical Example 

In this section, we present a numerical example to demonstrate the two control laws which were 

shown in the previous section to stabilize the rotating stall branch, make the bifurcation supercrit- 

ical, and eliminate the hysteresis, namely, (9) and (10). Specifically, we show that the hysteresis is 

eliminated using the critical values of the gains for which expressions were derived in the previous 

section, and that for larger values of the gain the bifurcation is softened further. 

5.1    Bifurcation Analysis 

Consider the compressor having characteristic 

^c($) = 0.149 - 1.017$ + 13.510$2 - 16.078$3. 

The peak value of this characteristic is ($0,$0) = (0.52,1.01). The bifurcation diagram for the 

open loop system for the rotating stall first Fourier magnitude A as a function of the throttle 

parameter 7 appears in Figure 2 for B = 0.1, a = 0.3, and lc = 6.66. The stable portions of the 

rotating stall and axisymmetric branches are plotted conventionally with solid curves while the 

unstable portions are plotted with dashed curves. Note the subcritical pitchfork bifurcation and 

the hysteresis region, where there is a range of the throttle parameter 7 such that more than one 

stable equilibria exist. We will use the controllers of the previous section to eliminate the hysteresis. 
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Figure 2: Bifurcation diagram for the open loop system 

5.1.1     Controller 1 

First, consider the controller u = if($ - $e)
2. From the previous section, the critical value of the 

gain K depends upon the value of the set point parameter $e. In this case, the gain must satisfy 

K 179.7 
> 196.5$e- 102.1' 

to eliminate the hysteresis. A plot of the critical value of the gain versus the set point is shown in 

Figure 3. For the rotating stall branch to be stabilized, the gain must He above the curve. Note that 

as the set point approaches the value corresponding to the peak of the compressor characteristic, 

the critical value of the gain increases. Hence, a larger gain is required for a set point closer to the 

peak and operation at the peak would require an infinite gain since the quadratic term would then 

play no role in the stability of the bifurcated solution. 

0.6 0.7 0.8 0.9 

<J> 

Figure 3: Critical value of gain versus set point 3>e for (9) 
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Next, we choose the set point to correspond to the throttle gain 7 = 0.6. The corresponding 

point along the compressor characteristic is ($e,fe) = (0.59,0.96). The critical value of the gain 

K that makes the bifurcation is supercritical is 13.66. Bifurcation plots of the closed loop system 

for this value and for K = 25 are shown in Figure 4. Note that the hysteresis is eliminated and that 

the pitchfork bifurcation softens as the gain is increased. Note also that the value of the throttle 

parameter at which the bifurcation occurs has decreased from the open loop value. 

0.4 0.4 

0.2 0.2 

<d      0 <;     0 

-0.2 -0.2 

-0.4 -0.4 

0.1 0.2 0.3         0.4 0.5 0.6 0.1 0.2 0.3     0.4 0.5 0.6 

Y Y 

Figure 4: Bifurcation diagrams for controller (9), K = 13.66,25 

5.1.2     Controller 2 

Next consider the controller u = -^($ - $e)
2. In this case, the hysteresis is eliminated and the 

rotating stall branch stabilized if 

179.7 
<K< 

0.52 
533.8$2 _ 359.4$e + 42.6 " " " $2 _ L04$e + 0>2?- 

A plot of the critical value of the gain as a function of the set point is shown in Figure 5. Since this 

controller stabilizes the bifurcated solution over a finite interval, the gain must lie between these 

two curves. The set point is chosen as before as ($e, \Pe) = (0.59,0.96) corresponding to 7 = 0.6. 

Bifurcation diagrams for the closed loop system with the critical value of the gain, K = 11.62, and 

K = 25 are shown in Figure 6. In this case, K < 115.9 is required for stability of the bifurcated 

solution. We see from the bifurcation diagram in Figure 6 that this controller creates a new unstable 

rotating stall equilibrium point. The origin of this new equilibrium point wiU be explained in a 

graphical interpretation of the equilibrium equations in the state space in the sequel. 
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Figure 5: Critical value of gain versus set point $e for (10) 

0.4 

0.2 

<         0 

-0.2 J . 

-0.4    

0.1        0.2        0.3        0.4        0.5        0.6 

Y 

Figure 6: Bifurcation diagrams for controller (10), K = 11.62,25 

5.2     Geometric Interpretation 

The axisymmetric and rotating stall branches of the equilibria are shown in the three dimensional 

state space (A,$,$) in Figure 7. On the left is a plot of the equilibrium branches, with the 

axisymmetric branch in the A = 0 plane shown as the darker line. On the right the throttle 

nonlinearity 

for 7 = 0.6 is shown as a curved surface intersecting the equilibrium branches. Note that the 

throttle surface intersects both branches so that hysteresis is present for this value of the throttle 

parameter. As the throttle parameter 7 is varied, the throttle surface moves up and down by 

increasing and decreasing its steepness.   The pitchfork bifurcation occurs as the surface passes 
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through the peak. 

Figure 7: Equilibrium Branches in State Space 

The bleed valve control laws used in this paper can be interpreted graphically as modifying 

the throttle surface, hence modifying the behavior of the closed loop system. We can characterize 

the modified throttle surface for control law (9) in terms of the gain K. In this case, the modified 

throttle surface is 

$2 = (7 + K($ - $e)
2)2*- 

This new surface is shown with the equilibrium branches in Figure 8. Note that the modified 

throttle surface no longer intersects both branches, but only the axisymmetric branch. Now, as the 

throttle surface moves up and passes through the characteristic peak, it only intersects the rotating 

stall branch past the peak, hence the supercritical bifurcation. 

Figure 8: Equilibrium Branches in State Space with Control Law (9) 
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Finally consider the control law (10). The modified throttle surface in this case is 

($-if($-$e)
2)2 = 7

2$. 

The new surface is shown as before in Figure 9. Two different views are shown for clarity, the one 

on the left with only a portion of the modified throttle surface and the one on the right with the 

entire surface in the range of the plot. Note that the modified throttle surface now goes through 

a minimum and then intersects the rotating stall branch. Hence, the new equilibrium point is 

created. The variation in the modified throttle surface is also worth mentioning to explain the 

nature of the bifurcation diagram in Figure 6. As 7 decreases, both sides of the throttle surface 

increase in steepness so that for very small 7, the throttle surface appears as a very narrow valley 

intersecting the rotating stall branch at two close points. This explains why the equilibrium values 

of the rotating stall equilibria in Figure 6 converge as 7 approaches zero. 

0.4 

0.5 

Figure 9: Equilibrium Branches in State Space with Control Law (10) 
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6    Discussion 

In this paper we have extended bifurcation stabilization results for a system whose critical mode 

is uncontrollable and unobservable to the case where the control does not vanish at the critical 

point. Control about a set point or operating point is considered, where the set point and the 

critical point are distinct. Such a control makes physical sense with systems such as compressors 

where operation away from the critical point is desired but the stability of the bifurcated solution 

is important because subcritical bifurcations can lead to hysteresis and undesirable behavior. The 

main result showed that each of the terms of the control law written in a Taylor series about the set 

point affected the stability of the bifurcated solution. Hence, control laws could be chosen to have 

a structure to meet other requirements. In this case, control laws for the compressor model were 

chosen to give only positive values of the control since bleed valve actuation is considered. It was 

shown that two control laws using only annulus-averaged quantities as feedback variables and bleed 

valves for actuation eliminate the hysteresis associated with rotating stall and stabilize the rotating 

stall equilibrium branch of the Moore-Greitzer three state model. A numerical example was used 

to show that as the gain increases beyond the critical value, the bifurcation is further softened. 

Furthermore, geometric interpretations of the control laws were given in the three dimensional 

state space. 

The controllers shown here have advantages over other control laws that appear in the literature. 

The control law u = KA2 introduced in [6] achieves the same result, but with several disadvantages. 

The use of the first Fourier magnitude A as a feedback variable increases the sensing and signal 

processing requirements of the control system, and hence increases the complexity of the seemingly 

simple feedback law. In addition, the authors in [6] consider a general nonlinear function of all of 

the feedback variables and conclude that only the square of the rotating stall magnitude affects 

the bifurcation. However, only the error states from the stall point are considered, rather than the 

error states using the set point as used here. In fact, if the set point in the present work is set 

equal to the stall point, then the results match those of [6]. Finally, use of the control law in [6] 

can have no effect on deep surge, as the control law is identically zero in the invariant $ - \P plane 

in which a surge limit cycle exists. Furthermore, such a control law may have detrimental effects 

on classic surge, or coupled rotating stall and surge, as described in [2]. The effect of the present 

control laws on surge will be the subject of future study. 
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The use of only annulus-averaged quantities in a control law for rotating stall was also described 

in [5], in which backstepping was used to find a control law that globally stabilized a set point. This 

work showed that hysteresis could be eliminated without feeding back the rotating stall magnitude. 

However, the derivation of the backstepping control law is complicated and results in a control law 

whose control action is not guaranteed to be positive for all values of the feedback variables and 

whose control input at the set point does not equal zero. In addition, although the avoidance of 

cancellation of nonlinearities is lauded as a benefit to the backstepping control law design technique, 

the formulation of the problem results in cancellation of the throttle nonlinearity by assuming that 

the throttle parameter 7 is the control law rather than augmenting 7 with a control input term. 
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